Covariate Shift in Hilbert Space: A Solution via Surrogate Kernels

نویسندگان

  • Kai Zhang
  • Vincent W. Zheng
  • Qiaojun Wang
  • James T. Kwok
  • Ivan Marsic
چکیده

Covariate shift is an unconventional learning scenario in which training and testing data have different distributions. A general principle to solve the problem is to make the training data distribution similar to that of the test domain, such that classifiers computed on the former generalize well to the latter. Current approaches typically target on sample distributions in the input space, however, for kernel-based learning methods, the algorithm performance depends directly on the geometry of the kernel-induced feature space. Motivated by this, we propose to match data distributions in the Hilbert space, which, given a pre-defined empirical kernel map, can be formulated as aligning kernel matrices across domains. In particular, to evaluate similarity of kernel matrices defined on arbitrarily different samples, the novel concept of surrogate kernel is introduced based on the Mercer’s theorem. Our approach caters the model adaptation specifically to kernel-based learning mechanism, and demonstrates promising results on several real-world applications. Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariate Shift in Hilbert Space: A Solution via Sorrogate Kernels

Covariate shift is a unconventional learning scenario in which training and testing data have different distributions. A general principle to solve the problem is to make the training data distribution similar to the test one, such that classifiers computed on the former generalizes well to the latter. Current approaches typically target on the sample distribution in the input space, however, f...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Hilbert Space Embeddings in Dynamical Systems

In this paper we study Hilbert space embeddings of dynamical systems and embeddings generated via dynamical systems. This is achieved by following the behavioural framework invented by Willems, namely by comparing trajectories of states. As important special cases we recover the diffusion kernels of Kondor and Lafferty, generalised versions of directed graph kernels of Gärtner, novel kernels on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013